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A lattice-based Ising model is presented which describes precipitation of an ordered phase at high tempera-
ture. It is based around the Ising model of mixed ferromagnetism �FM� and antiferromagnetism �AFM�, which
gives a qualitative description of the FeCr phase diagram. In addition to spin and species, a third index labels
the precipitate phase and serves to produce its additional entropy. Thus the FM-AFM Ising model is adapted to
produce precipitation of a sigma-type phase at high temperature, as observed in FeCr, in a form suitable for
kinetic Monte Carlo simulations. In addition, the anomalous asymmetry observed in the miscibility gap of
materials such as FeCr is also described, as is the finite low-temperature solubility and the onset of the stainless
property for high-Cr content steel.
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I. INTRODUCTION

The appearance of a disordered phase at high temperature
is commonplace in intermetallic alloys. However in some
systems, such as FeCr, one ordered phase exists at low tem-
peratures and another at high temperatures �440 °C�, with
disorder ultimately occurring at even higher temperature.
This gives a complicated phase diagram: published experi-
mental phase diagrams show at least seven distinct phase or
phase-coexistence regions, with some works having as many
as 11 distinct regions.1–3 In this paper we show that such a
complex phase diagram can be reproduced by an Ising-type
model with just three labels associated with each lattice site.

The Ising model is the simplest model for a phase trans-
formation taking place on a lattice. In its classic form, it
describes the transition from ordered to disordered phases.
The original motivation was the energetics of magnetism, but
the Ising Hamiltonian can also be motivated by many natural
phenomena involving short-range interactions between two-
state sites. Here, an Ising-type model is used to represent
spin �up or down�, species �Fe or Cr�, and local environment
�bcc-like or sigma-like�.

FeCr exhibits spinodal decomposition and a miscibility
gap1–4 with a high-T ordered complex structure, the sigma
phase, but no known ground-state intermetallic compounds.
Curiously, the heat of solution of dilute Cr in Fe is
negative,5–9 so the miscibility gap is skewed to allow high-Cr
concentration in the Fe-rich phase and a finite solubility at
zero temperature. This is accompanied by pronounced short-
ranged order in the solid solution phase.3,10 This is impos-
sible to describe with pair-potential or embedded-atom-type
models11 and does not appear to be associated with vibra-
tional entropy.12 Previous works have attempted explanations
at various levels of theory, from first-principles, spin-
dependent, density-functional theory �DFT� to concentration-
dependent interatomic potentials and two-band second-
moment tight-binding models.6–8,13–20 Determining full
phase diagrams from such models is computationally expen-
sive and can reveal surprising instabilities.21,22 Conventional
Monte Carlo simulation with density dependent potentials
now reproduces the �−�� separation.23,24

It is now established that the interplay between Fe-Fe fer-
romagnetic �FM� and Fe-Cr/Cr-Cr antiferromagnetic �AFM�

interactions is key to determining the phase diagram. This
focus on the spin-dependent interactions sets the system
apart from those where the first departure from a pairwise
model is to consider concentration dependence25 or cluster
expansions.26

The FM-AFM Ising model is the simplest model which
gives this anomalous skewed solubility: this is due to frus-
tration of Cr spins, which cannot be antiparallel both with the
Fe matrix and among themselves.27 The solubility limit of Cr
at T=0 K is determined by the range of the interaction be-
tween two single Cr impurities. According to electronic
structure calculations, this interaction extends at similar or-
der of magnitude to fifth-neighbor interactions,7,28,29 i.e.,
shells at � 1

2 , 1
2 , 1

2 �, �100�, �110�, � 3
2 , 1

2 , 1
2 �, and �111� with 8, 6,

12, 24, and 8 atoms, respectively: a total of 58. This is con-
sistent with a proposed cubic ordered Fe15Cr compound,8 but
this does not appear to be a true ground state.7,30 Here it is
shown that more quantitative agreement between the FM/
AFM model and the FeCr phase diagram can be obtained by
increasing the range of the interactions to fifth neighbors.

Ferritic stainless steels have good corrosion resistance,
high-temperature behavior, and irradiation damage resistance
and so are a potential first wall material in nuclear
reactors.31–33 This has sparked an enormous effort in multi-
scale modeling, linking various methodologies applicable at
different lengths and time scales. Within this scheme, atom-
istic models of structural evolution over time scales of years
can only be obtained using kinetic Monte Carlo34,35 �KMC�,
which can be applied only to a lattice-based model. Many of
the important processes in radiation damage on long time
scales involve interstitial defects and incoherent precipitates,
and it is therefore essential to generate new lattice-based
models which can represent off-lattice features in the KMC
framework.

The sigma phase is an approximately 50-50 phase36 in the
case of FeCr alloys. It exists only at high temperatures37,38

implying that it has higher entropy than the bcc-based phase-
separated mixture. Since the sigma phase is paramagnetic39

�PM�, spin is likely to be responsible for the excess entropy,
although electronic and vibrational degrees of freedom may
also play a role. Short-ranged weak paramagnetic
interactions39 give a Curie temperature around 40 K, rising
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somewhat in nanocrystals40,41 and therefore presumably in
microprecipitates. The sigma phase is also found in FeV, and
off-stoichiometry in OsW, MoRu, RuW, and MoOs. Al-
though site ordered at low temperatures,42 the sigma phase
has some site disorder at higher temperatures; low antisite
defect energy also manifests itself as a range of alloy com-
position.

The purpose of the present work is twofold, first to deter-
mine the minimal mathematical picture that will give a sys-
tem with anomalous solubility, short-ranged order, and high-
temperature ordered phase and to do so in a form suitable for
time-efficient computation �i.e., lattice KMC�. Second, to re-
late this to the correct physics �magnetism, species ordering,
and the different electronic environment associated with bcc
and sigma�. Using a lattice model means that the coordina-
tion of the high-temperature phase will not correspond to
sigma FeCr, but implicit differences in bonding can be de-
scribed alongside explicit treatment of paramagnetism.

The main result presented here will be to show that a
small extension to the AFM/FM Ising model can incorporate
a high-temperature ordered PM phase. Everything remains
on a bcc lattice, which means that precipitation is directly
applicable in KMC calculations once the migration rates are
known. Although this work primarily presents a Monte Carlo
procedure for high-temperature ordering, for definitiveness,
we will describe the model that simulates the thermodynam-
ics of Fe-Cr alloys.

II. ANOMALOUS SOLUBILITY

First we consider the FM-AFM phase diagram without
sigma and establish the correct solubility limit for Fe-Cr al-
loys. The energy of an atom i in the FM/AFM Hamiltonian27

can be written as

Hi
0�N� = �

j=1

N

Hij
0 , �1�

where Hij
0 depends on the species of atoms i and j,

Hij
0 = AN�i� j, Si + Sj = 2 �CrCr� ,

Hij
0 = �i� j, Si + Sj = 0 �CrFe� ,

Hij
0 = − �i� j, Si + Sj = − 2 �FeFe� ,

where Si label the species �SCr=1 , SFe=−1�, �i= �1 labels
the spins, and N is the number of interacting neighbors. The
parameter AN can be adjusted to give a reasonable ratio be-
tween Curie and Néel temperatures in iron and chromium,
respectively. The overall energy scale is then set by the CrFe
and FeFe interactions, which are set to 1.

Finite temperature equilibrium is found by using a Monte
Carlo procedure with the Metropolis algorithm, typically
over 54 000 sites, with larger systems used close to the phase
boundary. For canonical simulations the trial Monte Carlo

switch of a randomly chosen site uses Glauber dynamics for
the spins and Kawasaki dynamics for the species,

�i → − �i,

Si → Sj, Sj → Si. �2�

Trial moves are accepted with the usual Metropolis probabil-
ity max�exp�−�E /T� ,1�, which defines the reduced units for
the temperature. The process is repeated until equilibrium is
found, the temperature is then incremented, and the simula-
tion continues through the phase transition.

The solubility limit of the Cr in Fe at T=0 K is deter-
mined by the range of the interaction. Including second
neighbors �N=14 in bcc� gives a DO3 Fe3Cr compound with-
out any frustration-inducing Cr-Cr interactions.27 Conse-
quently the solubility limit at 0 K is 25%, and there is con-
tinuous solid solubility between bcc Fe and DO3 /Fe3Cr. For
all concentrations between 0% and 25% there are degenerate
ground states for any arrangements where no pairs of Cr
atoms are first or second neighbors. This solubility limit is
well above the 6% implied by ab initio work.

First-principles calculations6–8 show that the Cr-Cr inter-
action range extends at least to fifth neighbors.43 Applying
this in Eq. �1� �i.e., N=58� gives a 0 K solubility limit of
6.25%, at which concentration there are numerous structures
without Cr-Cr distances within the fifth-neighbor separation.
This again leads to degenerate periodic and nonperiodic
ground states.

With N=58 there is significant AFM frustration in pure
Cr, and the T=0 ground state is a q= �200� spin wave �as can
be seen at higher temperature in Fig. 3�a�� which has energy
−10A58 compared with the FM Fe energy of −58. To main-
tain a reasonable ratio of Néel to Curie temperature, we
choose the largest integer which gives a cohesive energy for
Cr smaller than for Fe, A58=5, noting that in the real system
this energy difference arises from the exchange interaction
strength rather than the spin itself. The phase diagram of this
fifth-neighbor model has been calculated and gives a good
description of the FeCr system aside from the missing sigma
phase �Fig. 1�.

It is worth noting that if ab initio data are used to build a
phase diagram using a nonpairwise model in the cluster-
variation method, it is essential to incorporate long-ranged
clusters.26 The Ising model is, essentially, a cluster model
incorporating only pairwise clusters, and thus one conclusion
of this work is that associating energy with larger clusters is
not necessary to reproduce the phase diagram, but long-range
interactions are. This may be a useful heuristic for producing
interatomic potentials for the FeCr system.

III. SURFACE SEGREGATION

Next, we examine the stainless-steel effect. It is well es-
tablished that chromium confers corrosion resistance in steel
when present at above 15%. This is due to surface segrega-
tion and subsequent oxide formation. Surprisingly, recent
DFT calculations45–49 showed that Cr segregation to the sur-
face of pure iron was not favorable either entropically45,46 or
energetically,47,48 except in simulations with small cells.48,49
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No consideration of surface physics or oxidization is in-
cluded in the model, thus the results in this section are de-
duced entirely from the bulk phases and are free of any em-
pirical fitting: we can expect only a qualitative picture. In
particular, chemical potentials and onsite terms in the Hamil-
tonian may be crucial. The chemical potential depends on the
external environment; so to avoid ambiguity here we work in
the canonical ensemble, so that the composition is fixed and
any surface segregation is at the expense of depletion else-
where.

Figure 2 shows calculations with Eq. �1� of the segrega-
tion profile of Cr near the �001� surface for various tempera-
tures and concentrations. Comparison with the phase dia-
gram shows that Cr segregation occurs only for conditions in

the phase-separation region: Cr precipitates preferentially at
the surface. Thus Cr does not surface segregate in pure iron;
the bulk must already be saturated solid solution. This illu-
minates results from previous ab initio calculations: with a
single Cr atom, small cells48 have higher effective Cr con-
centration than those with larger cells: finite cell size deter-
mines which region of the phase diagram the system lies in.

For all temperatures and bulk concentrations a small in-
crease in Cr concentration at the topmost layer can be ob-
served. This is a finite-size effect: isolated surface Cr atoms
will have fewer unfavorable Cr neighbors than bulk Cr atoms
simply because they have fewer neighbors in total. However
this region of enhanced Cr cannot spread into the bulk �the
surface effect is lost� or increase to 100% coverage �extra Cr
neighbors are unfavored�. Experiment suggests that the Cr-
enhanced region is a few nanometers thick,50 and this geo-
metric effect cannot produce more than a monolayer of Cr
enhancement.

Once the concentration reaches the phase boundary, pre-
cipitation begins in the bulk material. In the surface case, the
precipitate nucleates preferentially at the surface: in our cal-
culations we see only a small number of precipitates, usually
only those at the surface. Although the model does not pre-
dict a surface thickness, it is not a monolayer stabilized sim-
ply by the lower surface energy of Cr: the Cr-rich region is
many atoms thick.

The nucleation of precipitates at the surface is predicted
even in vacuum by this model: of course in real applications
of the FeCr alloys the upper layer is oxidized, and so the
energy of Cr atoms at the surface depends on the chemical
potential: we do not introduce another parameter to fit this
external boundary condition.

Although one would expect different interactions at the
surface compared to the bulk, the picture emerging from the
model is clear: the stainless-steel effect �Cr segregation� will
only occur for concentrations in the miscibility gap. Once the
Cr-rich surface region is established, it will thicken slowly
by diffusion so that the surface can withstand loss of oxide
due to wearing.

Many models assume that single atom Cr segregation �as
opposed to precipitation� is energetically favored at the sur-
face. Such a segregation effect would imply that the stainless
effect should be present for any Cr concentration. The
present picture of precipitation requires the alloy to be in the
miscibility gap before the stainless effect occurs, which is
consistent with the experimental facts.

IV. STABILIZING A HIGH-TEMPERATURE ORDERED
PHASE

Having established the correct solubility of Cr in Fe, we
now show how high-T precipitates can be stabilized in a way
applicable to KMC. Since we wish to describe precipitation
on a lattice, while preserving the spatial correlations of the
microstructure, the phase must be represented by an ordered
structure compatible with the bcc lattice. Here we use the
simplest, B2, as a proxy for sigma. This means that the to-
pology of neighbors in the high-temperature phase is not the
same as the sigma phase of the FeCr system. While this is
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FIG. 1. Phase diagram for fifth-neighbor FM/AFM Ising model
on a bcc lattice �Eq. �1�, AN=5�. Points are peaks in variance of the
energy as a function of temperature �in dimensionless units� and
calculated from 40 000 updates on each of 54 000 sites. The skew
in the miscibility gap implies solubility of Cr in Fe of 6.25% at T
=0.
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FIG. 2. �Color online� Fraction of Cr atoms against depth using
Eq. �1� �N=58, A58=5�. Each simulation used comprised a 20
�20�100 supercell oriented on �001�. The thick line has reference
composition, C=0.2�Fe80Cr20�T=10. Dotted blue lines/crosses cor-
respond to different temperatures C=0.2; solid black lines/circles
correspond to different compositions T=10.

ORDERED SIGMA-TYPE PHASE IN THE ISING MODEL… PHYSICAL REVIEW B 79, 094202 �2009�

094202-3



undesirable, the current generation of interatomic potentials
allowing off-lattice relaxation does not stabilize any high-
temperature phase and certainly not the observed sigma
phase.

To exist at high temperature, the sigma phase must have
higher entropy than � /��. We must be careful not to approxi-
mate away its physical origin. Sigma is an ordered phase
�though not an ordered line compound�, so this additional
entropy cannot be configurational.51 For this reason, the ap-
proximation of using the B2 structure as a proxy for the
sigma phase does not remove the key physics.

The electronic structures around an atom are different in
sigma from those in � /��. This could be sensibly described
by a local density of states in a d-band tight-binding model,
from which the energy depends primarily on the local topol-
ogy and number of electrons. The energy will depend on
both spin and species, and since the exchange energy and
band structure are different in sigma from � /��, we expect
both spin and species contributions to the Hamiltonian to be
different. To represent sites which have such a different local
electronic structure, an additional variable, pi, is introduced
on each site. This labels whether sites are in the sigma phase
�pi=1� or not �pi=0�.

Knowing that the sigma phase is paramagnetic, we as-
sume that interactions involving pi=1 sites are spin indepen-
dent. Then, for ordering interactions within pure sigma phase
�all atoms having pi=1�, we adopt the simplest model for an
alloy, the Ising model itself with a single coupling constant,
B. We can then adjust this parameter to set the phase-
transition temperature between sigma and � /��.

The revised Hamiltonian is then

Hi�58� = �1 − pi�Hi
0�58� + Bpi�

j=1

8

pj�SiSj� , �3�

where 58 represents the spin coupling to five neighbor shells
and 8 represents the nearest-neighbor interactions that de-
scribe the sigma phase �Eq. �3��. The parameter B represents
the relative interaction strengths. In keeping with the spirit of
avoiding detailed fitting, we choose the largest integer giving
sigma lower energy than either � or ��, i.e., B=6. The T
=0 cohesive energies of the stoichiometric structures are
given in Table I, wherein sigma is clearly unstable with re-
spect to the pure elements at T=0. Other T=0 features are
that isolated Fe has an energy of −10 in Cr �positive heat of
solution� while isolated Cr in Fe has a binding energy of −58
�negative heat of solution�. Thus the asymmetry of the mis-
cibility gap is ensured, with N=58 making it possible to

reach a concentration of 6.25% without introducing neigh-
boring Cr atoms. We note that this general AFM/FM/PM
model can be made to produce other ordered ground-state
phases with different values of A and B.

To investigate finite temperature we simulate the system
using Metropolis Monte Carlo with 54 000 sites �303 con-
ventional bcc cells�. For the Hamiltonian in Eq. �3� the com-
bined Glauber and Kawasaki dynamics for canonical simu-
lations �Eq. �2�� are combined with an additional trial move
pi→1− pi

Interfacial energies can suppress phase coexistence due to
hysteresis and finite-size effects. We finesse this by running
two types of calculation: constant concentration canonical
and fixed-T grand canonical. We avoid hysteresis by stepping
the temperature and restarting the system from cold. With
constant concentration we identify the hysteresis regions as
those where the ensemble-averaged energy has two branches
with changing temperature. For grand-canonical calculations
the Hamiltonian becomes

H = �
i

Hi�58� + � � Si, �4�

wherein the system runs to equilibrium with trial moves as
before, then the chemical potential � is incremented to vary
the concentration. At equilibrium, the grand-canonical calcu-
lations give a single-phase state, and the concentration at
which this phase changes determines the phase boundary.

In practice, it is important to start the grand-canonical
calculations with coexisting pure phases: otherwise �� forms
AFM domains, which do not anneal out on the time scale of
the simulations despite having higher free energy than the
single domain.

Checks exist on the realism of using a simple Ising model
for the sigma phase: B must be large enough to ensure that
the phase remains ordered across its stability range, yet small
enough to prevent it being stable down to 0 K. There is no
guarantee that these independent constraints can both be met,
and so it is encouraging to find that they can be. Similarly,
the sigma and bcc-based phases must phase segregate if the
notion of a crystal structure at a particular site is to make
sense. Again, it is encouraging to find that this does happen.
The additional entropy which stabilizes the sigma phase in
the model comes from the spin degeneracy associated with
the structural label pi.

52

As well as representing the sigma phase in precipitates,
pi=1 sites may exist at high temperatures in � or �� regions.
Following from Eq. �3�, they have zero energy; this increases
the entropy of the paramagnetic phase, lowering TC and TN.

Six quantities are measured as functions of temperature
and concentration: mean energy, spin, proportion of pi, and
their rms fluctuations. Phase boundaries are then found from
divergences �in practice peaks� in the fluctuations and iden-
tified from the � and p concentration and fluctuation. Snap-
shots are shown in Fig. 3 and the phase diagram is shown in
Fig. 4. It can be seen to contain all the main features of the
experimental FeCr diagrams.1–3

The pure elements have Curie and Néel temperatures of
T=27.8�Fe� and T=19.6�Cr�. These temperatures are lower
than the H0 system because of the entropy associated with

TABLE I. Energies of pure states in the fifth-neighbor model,
A58=5, B=6. The AFM structure is layered in the �001� direction.

System Composition Energy Structure Magnetism

� Fe −58 bcc Ferro

�� Cr −50 bcc Antiferro

Sigma FeCr −48 Sigma Para

� Fe15Cr −58 Degenerate Antiferri
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the p label. The modeled sigma phase appears at only high
temperatures, above T=10, stabilized by the higher entropy
arising from the degeneracy between �= �1. As temperature
increases further, a site-disordered phase appears.

Compared with the actual FeCr and FeV phase diagram
there are minor differences: notably the high Néel tempera-
ture means that sigma coexists with AFM �� below T=12
and a site-disordered phase above T=12. This is shown by
the dotted line in Fig. 4. Such regions do not appear on most
Fe-Cr phase diagrams, although there is some experimental
evidence of such a eutectoid2 for the Fe-rich region.

V. CONCLUSIONS

In summary, we set out to produce a lattice-based model
which could reproduce the unusual features of the experi-
mental phase diagram of FeCr. We set ourselves the con-
straint that it should be lattice based, such that it would be
usable in large-scale KMC calculations.

We then obtained a lattice-based Monte Carlo model
which gives qualitative explanation for three anomalous
properties of FeCr alloys: skew solubility due to short-
ranged order, the high-Cr content required for stainless
steels, and appearance of high-T ordered phase.

A parametrization inspired by the FeCr system uses pair-
wise FM-AFM long-range interactions to reproduce the skew

solubility without recourse to many-body terms in a cluster
expansion. It also predicts surface segregation only in the
phase coexistence region.

A nice side effect is the explanation of the stainless-steel
effect: surface segregation of Cr is not thermodynamically
stable outside the miscibility gap. In the miscibility gap Cr
precipitates grow preferentially on the surface. This provides
a qualitative explanation for the fact that the stainless-steel
effect is only observed for relatively large Cr concentrations
�typically greater than 12% Cr�.

The same �N=58� model produces high-T sigma precipi-
tation. Preliminary tests show that the same effects are ob-
tained with a short-range H0 model. This shows that the
sigma phase is not stabilized by the same long-range inter-
actions which give anomalous stability but rather by the ex-
cess paramagnetic contribution to the entropy. The model
Hamiltonian is very simple to compute, easily generalized to
other systems, and will enable KMC simulations of precipi-
tation on a time scale of years.
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FIG. 3. �Color online� Microstructures formed at various tem-
peratures and concentrations imaged using BALLVIEWER �Ref. 44�.
For clarity, cases where both phases percolate through the periodic
boundaries have been chosen rather than those with spherical pre-
cipitates of the minority phase. Color scheme shows bcc Fe �Si=1,
pi=0� as yellow and bcc Cr �Si=1, pi=0� as green. Sigma phase
atoms are shown as blue �Fe,Si=1, pi=1� or red �CrSi=0, pi=1�.
Spin state is depicted by light or dark. �a� �−�� coexistence, show-
ing skew solubility T=9, Fe0.5Cr0.5, �b� ��-sigma coexistence T
=12, Fe0.3Cr0.7, �c� �-sigma phase coexistence T=12, Fe0.58Cr0.42,
and �d� AFM+PM T=15, Fe0.15Cr0.85. It should be noted that in �c�
the apparently distinct red and blue regions are simply different
terminations of the B2 structure, separated by an antiphase
boundary.
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FIG. 4. Phase diagram for sigma phase Hamiltonian in Eq. �3�.
Points are found from peaks in the heat capacity from Monte Carlo
�MC� simulation with 54 000 bcc sites and 10 000 sweeps of the
lattice at each temperature. Concentration is held fixed and tempera-
ture is incremented in units of 0.1. Additional points are extracted
from grand-canonical simulations on the same system, increasing
the chemical potential in steps of 0.1 at constant temperature and
plotting the concentration at which the system switches across the
mixed-phase region. In general, the former method is better for
points on “horizontal” lines �e.g., order-disorder� and the latter for
“vertical” lines �e.g., edges of phase-coexistence regions�. Lines are
guides for the eyes separating phase regions. Phase designations
FM, AFM+sigma, etc., are deduced from inspection of snapshots
�Ref. 44� in the center of the region. The dotted line links the
eutectoid to the sigma and AFM phases.
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